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Abstract
Constructive algorithms are presented for controlling quantum systems
evolving on the SU(1, 1) Lie group. These procedures are performed via
structured decomposition of SU(1, 1), which achieve precise controls without
any approximations or iterative computations, under the sufficient condition
that examines the existence of such decomposition. The technique is applied
to controlling transitions between SU(1, 1) coherent states. These results open
up new perspectives on the control design of infinite-dimensional quantum
systems involving discrete or continuous spectra.

PACS numbers: 32.80.Qk, 02.20.Bb, 07.05.Dz, 85.70.Rp

1. Introduction

Group theoretical techniques have been widely applied in quantum control systems whose
propagators evolve on compact Lie groups [1–6]. An important method in the control design
is to decompose the target system propagator into a relatively simple sequence of factors
that can be directly implemented by piecewise constant or sinusoidal control pulses. This
technique is quite useful for many two-level or multi-level quantum systems [7–9], e.g. the
movement of spin- 1

2 particles [4, 6], the manipulation of electronic states of rubidium and the
Morse oscillator model of vibrational modes of hydrogen fluoride [5]. Among the existing
studies, factorization algorithms for the simplest nontrivial compact Lie group SU(2) have
been investigated in both classical and quantum cases [2, 3] under certain constraint.

In a wider context, many fundamental quantum systems possess noncompact dynamical
groups, e.g., SU(1, 1) for quantum systems with Poschl–Teller [10] or Morse [11] potential,
SO(4, 2) for the hydrogen atoms [12–15]. Thus it is necessary to extend the study to
noncompact cases. In the literature, much attention has been attracted on the analysis of
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dynamical properties [16–24] with known quantum Hamiltonians. However, to the authors’
knowledge, no studies published to date have examined the inverse problem, i.e. the design of
proper Hamiltonian to realize desired dynamics for such quantum systems.

In this paper, we will initiate the study of the control pulses design for quantum control
systems with noncompact symmetry groups. Here we consider the simplest class of quantum
systems whose Hamiltonians can be written as linear combination of the su(1, 1) Lie algebra
generators. The involved quantum control systems obey the following Schrödinger equation
(setting h̄ = 1):

iU̇ (t) = H0U(t) + u(t)HIU(t), U(0) = I, (1)

where H0 and HI are the internal and interaction Hamiltonians, respectively, and they generate
a su(1, 1) Lie algebra. The scalar control u(t) represents some adjustable external field coupled
to the system that is to be designed in order to achieve certain system evolutions. Related
physical examples can be seen in many situations such as coherent states in quantum optics
[25–28], spin wave in solid-state physics [29], the quantized vibrational motion of a trapped
ion [30], laser–plasma scattering [31] and so on. Here we assume that the admissible control
is a piecewise constant function of time, which is widely used in laboratory directly or after
rotating wave approximations. The system (1) has a ‘drift’ term H0 that is manipulated via
switching on and off the only one ‘perturbation’ HI . According to the group representation
theory [32, 12], the unitary propagator U(t) must act on an infinite-dimensional Hilbert space,
hence carries an infinite-dimensional unitary irreducible representation (UIR) of SU(1, 1).
Nevertheless, since all faithful representations of SU(1, 1) are algebraically isomorphic on
which the design of control functions does not rely, one can always focus the study on the
simplest two-dimensional non-unitary representation to be described in section 2.

We ascribe the control design of the above SU(1, 1)-type quantum control systems to the
following structured decomposition of the target system propagator Uf = U(Tf ):

Uf =
Q∏

k=1

e−itk (H0+ukHI ), (2)

where the su(1, 1) generators H0 and HI are assumed linearly independent, and uk is a
constant with respect to tk . A physical realistic decomposition should satisfy that (i) positive
time durations O1: tk > 0, and (ii) bounded control pulses O2: |uk| � C for some prescribed
constant C. Obviously, for a desired system propagator Uf , piecewise constant control laws
can be naturally determined once a decomposition in the form of (2) is found to satisfy O1
and O2. The idea here is parallel with those on the compact Lie group SU(2) studied in [2],
however, the structured decomposition of SU(1, 1) is far more complicated and limited as will
be seen in the following sections.

The balance of this paper is organized as follows. Section 2 gives preliminaries of the
Lie group SU(1, 1) and its Euler parametrizations. Section 3 constructs main factorization
algorithms subjected to O1 and O2, along with a sufficient condition to examine the existence
of such decomposition. Section 4 applies the algorithms to the control of transitions between
SU(1, 1) coherent states. Finally, conclusions are drawn in section 5.

2. Preliminaries on SU (1, 1)

The Lie group SU(1, 1) consists of two-dimensional complex pseudo-unitary matrices
parametrized by(

a b

b̄ ā

)
, |a|2 − |b|2 = 1, (3)
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where ā denotes the complex conjugate of a. The corresponding Lie algebra su(1, 1) has
generators, say {K1,K2,K3}, whose commutations read

[K1,K2] = −iK3, [K2,K3] = iK1, [K3,K1] = iK2. (4)

Suppose the Hilbert space of quantum states should carry a positive discrete UIR D+(k),
where k ∈ N

+ is the Bargmann index [12, 33]. Then one can choose an orthonormal basis
{|m, k〉,m = 0, 1, 2, . . .} under which the Casimir operator C = K2

3 − K2
1 − K2

2 and the
compact generator K3 are simultaneously diagonalized

C|m, k〉 = k(k − 1)|m, k〉, K3|m, k〉 = (m + k)|m, k〉.
Correspondingly, the operators K± = K1 ± iK2 will act as raising and lowering operators,

i.e.,

K+|m, k〉 = [(m + 1)(m + 2k)]1/2|m + 1, k〉,
K−|m, k〉 = [m(m + 2k − 1)]1/2|m − 1, k〉. (5)

Therefore, the SU(1, 1) propagators of real quantum systems are represented by infinite-
dimensional matrices under the above basis. However, as argued in section 1, one can adopt
the simplest faithful non-unitary representation (3) for the purpose of control design, of which
the algebra generators are identified as:

K1 = i

2
σy, K2 = − i

2
σx, K3 = 1

2
σz, (6)

where σx,y,z are Pauli matrices. K1 and K2 generate the noncompact one-parameter O(1, 1)

subgroups of SU(1, 1), respectively, as follows

exp(−iαK1) =
(

cosh α
2 −i sinh α

2

i sinh α
2 cosh α

2

)
,

exp(−iβK2) =
(

cosh β

2 −sinh β

2

−sinh β

2 cosh β

2

)
,

while K3 generates a compact O(2) subgroup

exp(−iγK3) =
(

e−i γ

2 0
0 ei γ

2

)
.

The SU(1, 1) matrices can be decomposed as products of the above factors, which are
called Euler-type decompositions [34]. In this paper, two different Euler-type decompositions
will be used. The first type is as follows:

g(ξ, η, ζ ) = e−iξK3 e−iηK2 e−iζK3 , (7)

where −2π � ξ, ζ � 2π and 0 � η < ∞. Here the first and the third factors are
O(2) transformations generated by K3. Every SU(1, 1) element possesses this kind of
decomposition.

The second kind of decomposition is achieved with its first and last factors generated by
K2, i.e.

h(ξ, µ, ζ ) = e−iξK2 e−iµK3 e−iζK2 , (8)

or

kl(ξ, ν, ζ ) = e−iξK2 e−iνK1 e−ilπK3 e−iζK2 , (9)

where −∞ < ξ, ζ, ν < ∞,−2π � µ � 2π, l = 0, 1, 2, 3. Almost every SU(1, 1) element
has the second kind of decomposition except a set of exceptional elements with zero measure
in SU(1, 1) [34].
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In addition, the following formula will be frequently used throughout this paper

exp[−i(xK1 + yK2 + zK3)]

=


cos

r

2
I2 − i

2

r
sin

r

2
× (xK1 + yK2 + zK3), (if z2 � x2 + y2),

cosh
r

2
I2 − i

2

r
sinh

r

2
× (xK1 + yK2 + zK3), (if z2 < x2 + y2),

(10)

where r =
√

|z2 − x2 − y2|. The SU(1, 1) element e−i(xK1+yK2+zK3) is called elliptical when
z2 > x2 + y2, hyperbolic when z2 < x2 + y2, and parabolic when z2 = x2 + y2.

3. Main results

This section contains the main algorithms to compute the structured decomposition of SU(1, 1)

matrices for two representative cases: (1) H0 = K3,HI = K2 and (2) H0 = K2,HI = K3

in subsections 3.1 and 3.2, respectively. The influence of the amplitude bound of the control
pulses on the time duration will be investigated. In subsection 3.3, we extend the algorithms
to systems with more general Hamiltonians, which can also be taken as a sufficient condition
that guarantees the existence of a desired decomposition.

3.1. The case H0 = K3,HI = K2

Given a target transformation parametrized in the Euler form (7), the factors like e−iθK3 can be
realized as free evolutions of system (1). Thus, it suffices to decompose an arbitrary SU(1, 1)

element by finding the following class of decomposition:

e−iθK2 =
3∏

k=1

e−itk (K3+ukK2) (11)

for arbitrary nonzero θ , where tk � 0, |uk| � C, k = 1, 2, 3.

Proposition 1.

(1) If C > 1, then for any −1 < u1, u3 < 1 and 1 < |u2| < C, the decomposition (11) can
be realized with time durations

t1 = 2

r1

[
arccot

(
u1 − u2

r1
coth

θ

2
− 1

r1

√
�
)

+ mπ

]
,

t2 = 2

r2
arcoth

(
1

r2

√
�
)

,

t3 = 2

r3

[
arccot

(
u3 − u2

r3
coth

θ

2
− 1

r3

√
�
)

+ nπ

]
,

(12)

where r1 =
√

1 − u2
1, r2 =

√
u2

2 − 1, r3 =
√

1 − u2
3 and � = (u2 − u1)(u2 − u3)

(
coth2 θ

2
− 1
)

+
(
u2

2 − 1
)
. The integers m and n are chosen so that t1 and t2 are positive, and their

parities are identical when (u2 − u1)θ � 0 and opposite when (u2 − u1)θ < 0.
(2) If C � 1, then for any −C < u1, u3 < C the decomposition (11) exists if

|θ | � 2 max

{
arcoth

√
1 + u1u3 − Cu1 − Cu3

(C − u1)(C − u3)
,

arcoth

√
1 + u1u3 + Cu1 + Cu3

(C + u1)(C + u3)

}
,

(13)
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and u2 satisfies
(u2 − u1)(u2 − u3) > 0,

1

2cosh2 θ

2

∣∣√u2
1 + u2

3 − 2u1u3 cosh θ + sinh2θ + u1 + u3

∣∣ � |u2| � C, (14)

the corresponding time durations are given as

t1 = 2

r1

[
arccot

(
u1 − u2

r1
coth

θ

2
± 1

r1

√
�
)

+ mπ

]
,

t2 = 2

r2

[
arccot

(
∓ 1

r2

√
�
)

+ lπ

]
,

t3 = 2

r3

[
arccot

(
u3 − u2

r3
coth

θ

2
± 1

r3

√
�
)

+ nπ

]
,

(15)

where rk =
√

1 − u2
k, (k = 1, 2, 3); � = (u2 − u1)(u2 − u3)

(
coth2 θ

2 − 1
)

+
(
u2

2 − 1
)
.

The integers m, n and l are chosen so that t1, t2 and t3 are positive, and the parities of m
and n are identical when (u2 − u1)θ � 0 and opposite when (u2 − u1)θ < 0.

Proof. See appendix A. �

The above results provide a rather wide class of control laws for a special target evolution
operator. For C > 1, the target e−iθK2 can be constructed within three control pulses, of which
the amplitudes of the first and the last terms are bounded by 1. Consequently, the two factors
e−it1(K3+u1K2) and e−it3(K3+u3K2) are elliptical. They are periodic terms and thus can be used to
keep t1, t2 and t3 positive at the same time (see appendix A). In particular these two terms can
be realized as pure free evolutions, i.e., u1 = u3 = 0, resulting the time durations

t1 = 2 arccot

(
−u2 coth

θ

2
−
√

u2
2 coth2 θ

2
− 1

)
+ 2mπ,

t2 = 2

r2
arcoth

(
1

r2

√
u2

2 coth2 θ

2
− 1

)
,

t3 = 2 arccot

(
−u2 coth

θ

2
−
√

u2
2 coth2 θ

2
− 1

)
+ 2nπ.

(16)

Moreover, the formulae in (12) indicate that the control amplitude of the second pulse can
take any value in (1, C]. The corresponding t2 decreases as |u2| increases, implying a trade-off
between the amplitude u2 and the time duration t2, while t1 and t3 increase (see figure 1 for an
example). As a result, the total evolution time of the employed three pulses in our scheme is
always nonzero even when the control pulses are unbounded because

lim
|u2|→∞

|u1|,|u3|<1

(t1 + t2 + t3) = lim
|u2|→∞

|u1|,|u3|<1

2

r1

[
arccot

(
u1 − u2

r1
coth

θ

2
− 1

r1

√
�
)]

+
2

r1
mπ

+ lim
|u2|→∞

|u1|,|u3|<1

2

r3

[
arccot

(
u3 − u2

r3
coth

θ

2
− 1

r3

√
�
)]

+
2

r3
nπ

= π

4

{
2

r1

[
4m + 1 − sign((u2 − u1)θ)

]
+

2

r3
[4n + 1 − sign((u2 − u3)θ)]

}
� min

[(
3

r1
+

1

r3

)
π,

(
2

r1
+

2

r3

)
π,

(
1

r1
+

3

r3

)
π

]
> 0.
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Figure 1. The durations of the control pulse for achieving e−i2.5K2 with respect to different u2
according to the formulae in (12), where u1 = 0.1, u3 = 0.8,m = n = 1.
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Figure 2. The durations of the control pulse for achieving e−i0.2K2 with respect to different u2
according to formula (15), where u1 = 0, u3 = 0.4,m = n = 1, l = 0.

The case of 0 < C � 1 is more complicated. However, one can still observe similar
trade-off between the values of t2 and u2 when θ satisfies the conditions in proposition 1 (see
figure 2 for an example). Particularly, u1 = u3 = 0 reduces equation (15) to

t1 = 2 arccot

(
−u2 coth

θ

2
±
√

u2
2 coth2 θ

2
− 1

)
+ 2mπ,

t2 = 2

r2

[
arccot

(
∓ 1

r2

√
u2

2 coth2 θ

2
− 1

)
+ lπ

]
,

t3 = 2 arccot

(
−u2 coth

θ

2
±
√

u2
2 coth2 θ

2
− 1

)
+ 2nπ.

(17)
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The range of the realizable operators within three pulses is largely limited when the bound
C < 1. Nevertheless, one can find an appropriate integer N such that θ ′ = θ

N
satisfies (13) when

θ is beyond the region defined in (13), and find a decomposition e−i θ
N

K2 =∏3
k=1 e−itk (K3+ukK2)

so that e−iθK2 can be realized with repeated sequences, i.e., e−iθK2 = [∏3
k=1 e−itk (K3+ukK2)

]N
.

Explicit structured decomposition algorithms for an arbitrary target g(ξ, µ, ζ ) with a
prescribed bound on the amplitude of the control pulses are summarized as follows:

Algorithm (a). The decomposing algorithm for C > 1

step 1. Select an appropriate control amplitude |u2| ∈ (1, C];
step 2. Determine the sign of u2 by the constraint u2µ � 0. Set u1 = u3 = 0 and have

(m, n) = (1, 1). Use equation (16) to calculate t1, t2 and t3;
step 3. Modulo the parameters ξ + t1 and ζ + t3 by 2π so that they both fall in [0, 2π);
step 4. The resulting factorization is g(ξ, µ, ζ ) = e−i(ξ+t1)K3 e−it2(K3+u2K2) e−i(ζ+t3)K3 .

Algorithm (b). The decomposing algorithm for C � 1

step 1. Let N be the minimum integer such that N � |η|
2 artanh C

;
step 2. Select an appropriate u2 such that |u2| ∈ [|tanh η

2N
|, C];

step 3. Determine the sign of u2 and let u2µ > 0. Set u1 = u3 = 0 and have (m, n) = (1, 1),
then use equation (17) to calculate t1, t2 and t3;

step 4. Modulo the parameters ξ + t1, ζ + t3 and t1 + t3 by 2π so that they fall in [0, 2π);
step 5. The resulting decomposition is e−i(ξ+t1)K3 [e−it2(K3+ukK2) e−i(t1+t3)K3 ]N−1 e−it2(K3+ukK2) ×

e−i(ζ+t3)K3 .

Example 1. The hyperbolic type transformation e−i4K2 can be realized with H0 =
K3,HI = K2 and C = 0.6. One may choose N = [ 4

2 artanh(0.6)

]
+ 1 = 3, θ =

4/N = 4/3, u1 = u3 = 0, u2 = C = 0.6, then compute from formula (17) that
t1 = 4.4722, t2 = 4.6696, t3 = 4.4722. Thus a possible decomposition for e−i4K2 is∏9

k=1 e−itk (K3+ukK2), with t1 = t3 = t4 = t6 = t7 = t9 = 4.4722, t2 = t5 = t8 = 4.6696;
u1 = u3 = u4 = u6 = u7 = u9 = 0, u2 = u5 = u8 = 0.6.

3.2. The case H0 = K2,HI = K3

In this case, the factors that can be realized by the free evolution of the quantum system (1) are
those generated by K2. Based on the Euler parametrization (7), similarly, the key to construct
a structured decomposition for an arbitrary SU(1, 1) element is to decompose e−iθK3 as

e−iθK3 =
3∏

k=1

e−itk (K2+ukK3), (18)

where tk � 0, |uk| � C, k = 1, 2, 3.
According to [34], however, it is more convenient to use the Euler parametrization (8)

and (9), where the generator K2 is diagonalized, to compute the representation matrix (or
propagator) elements under noncompact basis of the UIR’s of SU(1, 1). Or in the language of
quantum control theory, as the free Hamiltonian of the involved quantum control system here
is the noncompact operator K2, the Euler parametrization (8) and (9) will be more convenient
to describe the population transition between different eigenstates of K2. Thus algorithms are
needed to find the structured decomposition

e−iθK1 =
3∏

k=1

e−itk (K2+ukK3), (19)

where tk � 0, |uk| � C, k = 1, 2, 3.
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Proposition 2. For any θ ∈ (−π, π) and C > 1, the decomposition (18) can be realized with
the time durations

t1 = 2

r1

[
arcoth

(
u1 − u2

r1
cot

θ

2
+

1

r1

√
�
)]

,

t2 = 2

r2

[
arccot

(
− 1

r2

√
�
)

+ 2lπ

]
,

t3 = 2

r3

[
arcoth

(
u3 − u2

r3
cot

θ

2
+

1

r3

√
�
)]

,

(20)

where (u1, u2, u3) ∈ �+ ∩ �0,

�+ =
{
(u1, u2, u3)|� � 0; uk − u2

rk

cot
θ

2
+

1

rk

√
� � 1, k = 1, 3

}
,

�0 = {(u1, u2, u3)| − 1 < u1, u3 < 1, 1 < |u2| < C},
r1 =

√
1 − u2

1, r2 =
√

u2
2 − 1, r3 =

√
1 − u2

3,� = (u2 − u1)(u2 − u3)
(
cot2 θ

2 + 1
)

+
(
1 − u2

2

)
.

The integer l is chosen to keep t2 positive.

Proof. See appendix B. �

The result stated in proposition 2 also provides a rather wide class of control laws for
achieving a given target. In such decomposition, only the second term e−it2(K2+u2K3) is elliptical,
which can be used to adjust t1, t2 and t3 to be positive. Similarly, setting the first and the second
pulses u1 and u3 to zero will lead to the simplest expression of time durations

t1 = 2 arcoth

(
−u2 cot

θ

2
+

√
1 + u2

2 cot2
θ

2

)
,

t2 = 2

r2

[
arccot

(
− 1

r2

√
1 + u2

2 cot2
θ

2

)
+ 2lπ

]
,

t3 = 2 arcoth

(
−u2 cot

θ

2
+

√
1 + u2

2 cot2
θ

2

)
.

(21)

In comparison with the case when H0 = K3,HI = K2, the pulse durations t1, t2 and t3
can be designed to be arbitrary short in the limit of unbounded controls (see figure 3 for an
example), because one can verify from equation (20) that

lim
|u2|→∞

|u1|,|u3|<1

t1 = lim
|u2|→∞

|u1|,|u3|<1

t2 = lim
|u2|→∞

|u1|,|u3|<1

t3 = 0. (22)

It should be noted that all the three factors e−it1(K2+u1K3), e−it2(K2+u2K3) and e−it3(K2+u3K3) on
the right-hand side of (18) can be designed to be simultaneously elliptical, i.e., |u1|, |u2|, |u3| ∈
(1, C], with the corresponding control durations being

t1 = 2

r1

[
arccot

(
u1 − u2

r1
cot

θ

2
± 1

r1

√
�
)

+ 2mπ

]
,

t2 = 2

r2

[
arccot

(
∓ 1

r2

√
�
)

+ 2lπ

]
,

t3 = 2

r3

[
arccot

(
u3 − u2

r3
cot

θ

2
± 1

r3

√
�
)

+ 2nπ

]
,

(23)
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Figure 3. The durations of the control pulse for achieving ei0.9K3 with respect to different u2
according to formula (20), where u1 = 0.1, u3 = 0.9, l = 1.
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Figure 4. The durations of the control pulse for achieving e−i1.5K3 with respect to different u2
according to formula (23), where u1 = 2u2, u3 = 5u2, m = l = n = 1.

where the integers m, n and l are introduced so that t1, t2 and t3 are positive. The parities
of m and n are identical when (u1 − u2)θ � 0, and opposite when (u1 − u2)θ < 0. From
equation (23), we can obtain the following limitations for t1, t2 and t3 as

lim
|u2|→∞

|u1|=O(|u2|)|u3|=O(|u2|)

t1 = lim
|u2|→∞

|u1|=O(|u2|)|u3|=O(|u2|)

t2 = lim
|u2|→∞

|u1|=O(|u2|)|u3|=O(|u2|)

t3 = 0. (24)

The above equation indicates that the action time t1, t2 and t3, can be designed arbitrary small
as long as the upper bound of the control pulses is large enough (see figure 4 for an example).
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Proposition 3. For any θ ∈ R and C > 1, the decomposition (19) can be realized with time
durations 

t1 = 1

r1

[
arccot

(
− sign(�13/�23)

r1

√
�12�13

�23

)
+ 2mπ

]
,

t2 = 1

r2
arcoth

[
1

r2

√
�12�23

�13

]
,

t3 = 1

r3

{
arctan

[
r3(�13 − �23)sign(�23)

(u1 − u2)(u3 − coth θ)

√
�12

�13�23

]
+ 2nπ

}
,

(25)

where r1 =
√

u2
1 − 1, r2 =

√
1 − u2

2, r3 =
√

u2
3 − 1,�12 = 1−u1u2 +(u1−u2) coth θ,�13 =

1 − u1u3 + (u1 − u3) coth θ,�23 = 1 − u2u3 + (u2 − u3) coth θ,�0 = {(u1, u2, u3)|1 <

|u1|, |u3| � C, |u2| < 1},�+ = {(u1, u2, u3)
∣∣�12�13

�23
� 0, 1

r2

√
�12�23

�13
� 1
}
, (u1, u2, u3) ∈

�0 ∩ �+, and the integers m and n are chosen so that t1 and t3 are positive.

Proof. The cumbersome proof is omitted since similar to that of the last two propositions.
�

In the structured decomposition (19), the two terms e−it1(K2+u1K3) and e−it3(K2+u3K3) are
elliptical, while the second hyperbolic term can be taken as a free evolution. Similarly, with
the increase of the amplitudes of the control pulses, the corresponding durations will decrease
and tend to zero.

The propositions 2 and 3 provide constructive algorithms for decomposing elements in
SU(1, 1) in the forms of g(ξ, µ, ζ ), h(ξ, µ, ζ ) and kl(ξ, ν, ζ )(l = 0, 1, 2, 3) described in (7),
(8) and (9), respectively, as follows.

Algorithm (c). The algorithm for g(ξ, η, ζ )

step 1. Let N = [ |ξ |
π

]
+ 1 and M = [ |ζ |

π

]
+ 1;

step 2. Let |u21| ∈ (1, C] and achieve the decomposition e−i ξ

N
K3 = e−it11K2 e−it21(K2+u21K3) ×

e−it31K2 according to (21);
step 3. Let |u22| ∈ (1, C], repeatedly, achieve the decomposition e−i ζ

M
K3 = e−it12K2 ×

e−it22(K2+u22K3) e−it32K2 ;
step 4. The required decomposition is then

g(ξ, η, ζ ) = [e−it11K2 e−it21(K2+u21K3) e−it31K2 ]N e−iηK2 [e−it12K2 e−it22(K2+u22K3) e−it32K2 ]M.

(26)

Algorithm (d). The algorithm for h(ξ, µ, ζ )

step 1. Let p = 1−sign(ξ)

2 and q = 1−sign(ζ )

2 ;
step 2. Decompose e−i π

2 K3 into e−it11K2 e−it21(K2+u21K3) e−it31K2 by equation (21), where |u21| ∈
(1, C];

step 3. Repeatedly, obtain the decomposition of e−iµK3 as [e−it12K2 e−it22(K2+u22K3) e−it32K2 ]N in
the same way as that introduced in algorithm(c), where |u23| ∈ (1, C];

step 4. Note that e−i3πK3 e−iξK2 e−iπK3 = e−i(−ξ)K2 , thus we finally have

h(ξ, µ, ζ ) = [e−it11K2 e−it21(K2+u21K3) e−it31K2 ]6p e−i|ξ |K2 [e−it11K2 e−it21(K2+u21K3) e−it31K2 ]2p

× [e−it12K2 e−it22(K2+u22K3) e−it32K2 ]N [e−it11K2 e−it21(K2+u21K3) e−it31K2 ]6q

× e−i|ζ |K2 [e−it11K2 e−it21(K2+u21K3) e−it31K2 ]2q .
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Algorithm (e). The algorithm for kl(ξ, ν, ζ )

step 1. Calculate the decomposition of e−i π
2 K3 , e−iξK2 and e−iζK2 according to algorithm (d);

step 2. Make use of equation (25) and decompose e−iνK1 into e−it1(K2+u1K3) e−it2K2 e−it3(K2+u3K3),
where |u1|, |u3| ∈ (1, C], u2 = 0;

step 3. Obtain the decomposition of kl(ξ, ν, ζ )(l = 0, 1, 2, 3) as

kl(ξ, ν, ζ ) = [e−it11K2 e−it21(K2+u21K3)e−it31K2 ]6pe−i|ξ |K2 [e−it11K2 e−it21(K2+u21K3)e−it31K2 ]2p

× e−it1(K2+u1K3)e−it2K2 e−it3(K2+u3K3)[e−it12K2 e−it22(K2+u22K3)e−it32K2 ]2l

× [e−it11K2 e−it21(K2+u21K3)e−it31K2 ]6qe−i|ζ |K2 [e−it11K2 e−it21(K2+u21K3)e−it31K2 ]2q .

3.3. The general case

In this section, H0 and HI are allowed to be arbitrary linearly independent elements in the
su(1, 1) Lie algebra, i.e., H0 = a1K1 + b1K2 + c1K3 and HI = a2K1 + b2K2 + c2K3, where
the two real vectors [a1, b1, c1]T and [a2, b2, c2]T are linearly independent.

Similarly, to accomplish the structured decomposition for SU(1, 1) elements, we only
need to decompose e−iθK3 and e−iτK2 . For simplicity, let

� =
{
u ∈ R

∣∣∣∣ (a1 + ua2)
2 + (b1 + ub2)

2

(c1 + uc2)2
< 1, |u| � C

}
,

�(u1, u2) = (a1 + u2a2)(b1 + u1b2) − (a1 + u1a2)(b1 + u2b2)

(a1 + u1a2)(a1 + u2a2) + (b1 + u1b2)(b1 + u2b2)
,

(27)

and

ϒ = {σ |σ = arctan �(u1, u2); u1, u2 ∈ �}.
Obviously, there exists a closed interval [θmin, θmax] in ϒ .

First, let us study the procedure for realizing the structured decomposition of e−iθK3 . It is
obvious that if θ ∈ [2θmin, 2θmax] there exist at least two different elements u1 and u2, which
satisfy the equation

�(u1, u2) = tan
θ

2
, (28)

in the defined set � above. Let u11 and u12 satisfy �(u11, u12) = tan θ
2 , and then with a few

routine calculations we can obtain the following decomposition

e−iθK3 =
2∏

k=1

e−it1k(H0+u1kHI ), (29)

where 
t11 = 2

r1

[
arctan

r1 sin θ
2

(
y2 sin θ

2 − x2 cos θ
2

)
x1z2 + y2z1 sin θ

2 cos θ
2 − x2z1cos2 θ

2

+ 2mπ

]
,

t12 = 2

r2

[
arctan

x1r2 sin θ
2

(x1z2 − x2z1) cos θ
2 + y2z1 sin θ

2

+ 2nπ

]
,

(30)

where xk = a1 + u1ka2, yk = b1 + u1kb2, zk = c1 + u1kc2, rk =
√

z2
k − x2

k − y2
k , k = 1, 2. The

integers m and n are chosen to keep t11 and t12 positive.
If θ /∈ [2θmin, 2θmax] we can find two integers N(>0) and M, which satisfy the inequality

2θmin � θ̃ = M × 2π + θ

N
� 2θmax. (31)
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Thus,

exp(−iθK3) = exp[−i(M×2π + θ)K3] =
[

exp

(
−i

M×2π + θ

N
K3

)]N
= [exp(−iθ̃K3)]

N. (32)

Consequently, it can be concluded that for arbitrary θ the factor e−iθK3 can be decomposed
as

e−iθK3 =
Q1∏
k=1

e−it (1)
k (H0+u

(1)
k HI ) (33)

when the set � is nonempty, where t
(1)
k � 0,

∣∣u(1)
k

∣∣ � C, k = 1, 2, . . . , Q1.

Next, let us study the structured decomposition for e−iτK2 . Let u21, u22( 
=u21), u23(=
u21) ∈ �,u′

2k =
√

(a1+u2ka2)2+(b1+u2kb2)2

|c1+u2kc2| (k = 1, 2, 3) and make use of proposition 1, then we

can decompose e−iτK2 for any τ ∈ [0,∞) as

exp(−iτK2) =
{

3∏
k=1

exp[−it ′2k(K3 + u′
2kK2)]

}Q′

, (34)

where t ′2k � 0, k = 1, 2, 3 and Q′ is a positive integer. Therefore

exp(−iτK2) =
{

3∏
k=1

e−it ′2k(K3+u′
2kK2)

}Q′

=
{

3∏
k=1

e−iαkK3 exp

(
−it ′2k

[
u′

2k

(a1 + u2ka2)K1 + (b1 + u2kb2)K2√
(a1 + u2ka2)2 + (b1 + u2kb2)2

+ K3

])
e−iγkK3

}Q′

=
{

3∏
k=1

e−i(αk+βk)K3 exp

(
−it ′2k

[
u′

2k

(a1 + u2ka2)K1 + (b1 + u2kb2)K2√
(a1 + u2ka2)2 + (b1 + u2kb2)2

+ sign(c1 + u2kc2)K3

])
e−i(γk+βk)K3

}Q′

=
{

3∏
k=1

e−i(αk+βk)K3 exp

(
−i

t ′2k

|c1 + u2kc2| [(a1K1 + b1K2 + c1K3)

+ u2k(a2K1 + b2K2 + c2K3)]

)
e−i(γk+βk)K3

}Q′

=
{

3∏
k=1

e−i(αk+βk)K3 e−it2k(H0+u2kHI ) e−i(γk+βk)K3

}Q′

, (35)

where

t2k = t ′2k

|c1 + u2kc2| � 0, (36)

αk = arccos
sign(a1 + u2ka2)(b1 + u2kb2)√
(a1 + u2ka2)2 + (b1 + u2kb2)2

+
3

2
[1 − sign(a1 + u2ka2)]π, (37)

γk = 4π − αk, (38)
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βk =



0
(if c1 + u2kc2 � 0),

sign
(
w2

k − v2
k

)
arcsin

−2wkvk

w2
k + v2

k

+
1 − sign

(
w2

k − v2
k

)
2

π

(if c1 + u2kc2 < 0),

(39)

wk =


cosh[t2k

√
(a1 + u2ka2)2 + (b1 + u2kb2)2 − (c1 + u2kc2)2]

(if (a1 + u2ka2)
2 + (b1 + u2kb2)

2 − (c1 + u2kc2)
2 � 0),

cos[t2k

√
(c1 + u2kc2)2 − (a1 + u2ka2)2 − (b1 + u2kb2)2]

(if (a1 + u2ka2)
2 + (b1 + u2kb2)

2 − (c1 + u2kc2)
2 < 0),

(40)

vk =



− c1 + u2kc2√
(a1 + u2ka2)2 + (b1 + u2kb2)2 − (c1 + u2kc2)2

× sinh(t2k

√
(a1 + u2ka2)2 + (b1 + u2kb2)2 − (c1 + u2kc2)2)

(if (a1 + u2ka2)
2 + (b1 + u2kb2)

2 − (c1 + u2kc2)
2 � 0),

− c1 + u2kc2√
(c1 + u2kc2)2 − (a1 + u2ka2)2 − (b1 + u2kb2)2

× sin(t2k

√
(c1 + u2kc2)2 − (a1 + u2ka2)2 − (b1 + u2kb2)2)

(if (a1 + u2ka2)
2 + (b1 + u2kb2)

2 − (c1 + u2kc2)
2 < 0).

(41)

From equations (33) and (35), we can draw the conclusion that for arbitrary τ the factor e−iτK2

can be decomposed as

e−iτK2 =
Q2∏
k=1

e−it (2)
k (H0+u

(2)
k HI ) (42)

when the set � is nonempty, where t
(2)
k � 0, |u(2)

k | � C, k = 1, 2, . . . ,Q2.

Finally, we have the following theorem:

Theorem 1. For any given g(ξ, η, ζ ) ∈ SU(1, 1), the decomposition g(ξ, η, ζ ) =∏Q
k=1 e−itk (H0+ukHI ) with tk � 0 and |uk| � C always exists if the set � in (27) is nonempty.

In this theorem, the nonemptiness of set � assures that H0 + uHI can be adjusted to
be the generator of a compact one-parameter subgroup of SU(1, 1). It is evident that if the
structured decomposition g(ξ, η, ζ ) =∏Q

k=1 e−itk (H0+ukHI ) is realizable for arbitrary (ξ, η, ζ ),
every element in SU(1, 1) will be attainable for the involved quantum system (1). The controls
u(t) that will send the system from the initial U(0) = I to the terminal U(t) = g(ξ, η, ζ ) are
piecewise constant functions of time. Thus the nonemptiness of the set � is also a sufficient
condition of system controllability.

The following is the summarized algorithm for the structured decomposition in the general
case.

Algorithm (f). Decomposing algorithm for the general case

step 1. Check � for the given Hamiltonians H0 and HI and the prescribed control bound C. If
the set is nonempty goto next step, otherwise the required structured decomposition is
likely to be inexistent, thus stop the procedure;

step 2. Decompose e−iηK2 into (34) according to algorithm (a) or (b);
step 3. Based on the result obtained in step 2, make use of formulae (36)–(41) and obtain the

decomposition for e−iηK2 provided in (35);
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step 4. Prepare the compact terms e−iθK3 appeared in the above steps and in the parametrization
formula g(ξ, η, ζ ) as (33);

step 5. Unify the above steps and complete the structured decomposition for g(ξ, η, ζ ).

4. Applications

In this section, we will show how the decomposition technique discussed above can be applied
to control a realistic physical system evolving on SU(1, 1). Generally speaking, the relevant
control objectives can be categorized as follows: (i) realize a transition between two different
states in D+(k), such as the basis states |m, k〉 or the superposition states

∑∞
m=0 cm|m, k〉 (where∑∞

m=0 |cm|2 = 1); (ii) maximize the expectation value 〈ψ |F̂ |ψ〉 of a selected observable F̂ ,
such as the expectation value of the free Hamiltonian H0, which corresponds to the energy of
the undergoing quantum system. In this section we will concentrate on the first case.

In order to realize a transition between two discrete basis |m1, k〉 and |m2, k〉, one may find
a (nonunique) propagator Uf = g(ξ, η, ζ ) = e−iξK3 e−iηK2 e−iζK3 that will realize a desired
population transfer ratio P k

m1m2
. Since K3 is diagonalized in the UIR D+(k), the two compact

operators e−iξK3 and e−iζK3 only affect the phase between different discrete basis states, and
will not cause any population transfer. Thus the relevant population transfer ratio P k

m1m2
is

completely determined by the term e−iηK2 , and

P k
m1m2

= |〈m1, k|Uf |m2, k〉|2 = |〈m1, k| e−iηK2 |m2, k〉|2 = [V k
m1m2

(η)
]2

, (43)

where V k
m1m2

(η) = (−1)m2−m1V k
m2m1

(η) [33, 35], and for m1 � m2

V k
m1m2

(η) = (−1)m2−k 1

(2k − 1)!

[
(m1 + k − 1)!(m2 + k − 1)!

(m1 − k)!(m2 − k)!

](
tanh

1

2
η

)m1+m2

×
(

cosh
1

2
η

)−2k

F

(
k − m2; k − m1; 2k;− 1

sinh2 1
2η

)
. (44)

Once the terminal population transfer ratio P k
m1m2

is provided, one can immediately compute
the corresponding parameter η from (44) and then carry out the procedure to design the proper
control field.

As an illustration, consider the following quantum system

i
dϕ(t)

dt
= [K3 + u(t)K2]ϕ(t), (45)

where the prescribed bound of the control amplitude is assumed to be C = 0.6. Assume
the initial of system (45) is ϕ(0) = |2, 2〉, and the target population transfer ratio P 2

24 to the

terminal |4, 2〉 is 0.2194. From the equation V 2
24(η) =

√
P 2

24, it can be immediately calculated
out to be that η = 1.3333. Thus, making use of the result presented in example 1 the required
control field is immediately determined.

It should be mentioned that not all the prescribed transfer ratios P k
m1m2

∈ [0, 1] can

be realized, because the equation V k
m1m2

(η) =
√

P k
m1m2

may have no solution. The similar
circumstance may occur in the case when the superposition states are involved. A complete
transition between two different states |ϕ1〉 and |ϕ2〉 can be realized only if they are in the same
orbit of SU(1, 1) group, i.e., there exists a SU(1, 1) transformation which sends |ϕ1〉 to |ϕ2〉.

However, the control laws can be found to realize the complete transition between two
arbitrary SU(1, 1) coherent states (CS’s). The SU(1, 1) CS, a special superposition state in
D+(k), plays an important role in the field of nonlinear optics as it provides an example of
ideal squeezed vacuum state [18]. In the laboratory, the SU(1, 1) CS has been realized in
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many systems such as trapped ions [36–38], quantum electrodynamic cavities [39–41] and
solids [42]. It will be exhibited that the desired propagators, evolving over the SU(1, 1) Lie
group, can be achieved by piecewise constant external control pulses. These switching control
laws can be easily designed based on the decomposition technique.

Following Perelomov [43], in the UIR D+(k) of SU(1, 1), the SU(1, 1) CS’s are defined
as

|ξ, k〉 = D(α)|0, k〉 = exp(αK+ − α∗K−)|0, k〉

= (1 − |ξ |2)k
∞∑

m=0

[
�(m + 2k)

m!�(2k)

] 1
2

ξm|m, k〉, (46)

where α = −(θ/2) e−iϕ, ξ = − tanh(θ/2) e−iϕ , with the parameters ϕ and θ obeying
−∞ < θ < ∞, 0 � ϕ � 2π . Usually, the defined Perelomov SU(1, 1) CS’s are governed by
the quantum control system with the Hamiltonian [17]

H(t) = A(t)K3 + f (t)K+ + f ∗(t)K− + B(t). (47)

Without loss of generality, it can be assumed that B(t) = 0, A(t) = 2�0 and f (t) ∈ R [18],
by which equation (47) is reduced to

H(t) = 2�0K3 + 2f (t)K1. (48)

The Hamiltonian (48) is also a Foldy-like Hamiltonian used to depict a Bose–Einstein
condensate system [20, 44], where f (t) represents the coupling constant of interbosonic
interactions.

To realize Perelomov SU(1, 1) CS’s in a realistic quantum system, a special realization
of the Lie algebra is required. In the frame work of bosonic operators, the Hamiltonian (47)
can be used to describe the parametric down conversion process as well [45]. There are two
different kinds of realizations which are familiar in the literatures [18, 23]. The first kind is
the single-mode case, which is used to describe a degenerate parametric amplifier [18, 46]. In
this case, the su(1, 1) generators are given by

K+ = 1
2 (a†)2, K− = 1

2 (a)2, K3 = 1
4 (a†a + aa†). (49)

The second kind of realization is the two-mode case, which describes the non-degenerate
parametric amplifier [18, 47]. The corresponding su(1, 1) generators are

K+ = a†b†, K− = ab, K3 = a†a + b†b + 1. (50)

No matter which kind of realization is involved, however, will the structured
decomposition be affected. To find a feasible control u(t) that steers the system (48) from the
vacuum state |0, k〉 to the target |ξ, k〉, we may rewrite the propagator D(α) defined in (46) as

D(α) = exp(αK+ − α∗K−)

= exp{−i[−2 Im(α)K1 − 2 Re(α)K2]}
= exp(it1K3) exp(−i2|α|K2) exp(it3K3), (51)

where t1 = arccos[sign(Im(α))Re(α)/|α|] + 3
2 [1 + sign(Im(α))]π, t3 = 4π − t1.

Suppose the prescribed bound of the external control pulses C > �0. From
proposition 1, the factor exp(−i2|α|K2) can be decomposed as

exp(−i2|α|K2) = exp(−it21K3) exp{−it22[2�0K3 + uK2]} exp(−it23K3), (52)
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where 

t21 = 2 arccot

 u

2�0
coth |α| −

√(
u

2�0

)2

coth2 |α| − 1

 + 2nπ,

t22 = 1

�0

√
(u/2�0)2 − 1

arcoth

√
(u/2�0)

2 coth2 |α| − 1

(u/2�0)2 − 1
,

t23 = 2 arccot

 u

2�0
coth |α| −

√(
u

2�0

)2

coth2 |α| − 1

 + 2mπ,

(53)

where 2�0 < u < 2C, and n = 0, 1, 2, . . . ,∞,m − n = 0,±2,±4, . . . ,±∞. The two
integers m and n are chosen to assure that t21, t23 > 0. On the other hand, it can be observed
that exp{−i[2�0K3 + uK2]} = exp(−i5π/2K3) exp{−i[2�0K3 + uK1]} × exp(−i3π/2K3),
thus we have

D(α) = exp(it1K3) exp(−it21K3) exp(−i5π/2K3) exp[−it22(2�0K3 + uK1)]

× exp(−i3π/2K3) exp(−it23K3) exp(it3K3)

= exp[−i(−t1 + t21 + 5π/2)K3] exp[−it22(2�0K3 + uK1)]

× exp[−i(−t3 + t23 + 3π/2)K3]. (54)

For example, if u is selected to be 3�0, we can immediately realize the propagator
D(−2 e−i π

6 ) by (setting h̄ = 1)

D
(− 2 e−i π

6
) = exp

(
−i

3.8398

�0
×2�0K3

)
exp

[
−i

1.5386

�0
(2�0K3 + 3�0K1)

]
× exp

(
−i

1.7454

�0
×2�0K3

)
. (55)

It indicates that the target Perelomov SU(1, 1) CS |−tanh(2) e−i π
6 , k〉 can be achieved from

the original state |0, k〉 by the following control pulses:

f (t) =



0, 0 � t � 1.7454

�0
;

3

2
�0,

0.8727

�0
< t � 3.284

�0
;

0,
1.642

�0
< t � 7.1239

�0
.

(56)

Similarly, the structured decomposition also offers control laws for complete transitions
between two arbitrary SU(1, 1) CS’s.

5. Conclusions

This paper presented constructive algorithms to achieve the structured decomposition for an
arbitrary SU(1, 1) matrix under the restrictions O1 and O2. It is shown that any element in
SU(1, 1) can be achieved in this way if the total Hamiltonian H0 + uHI can be adjusted to be the
generator of some compact subgroup of SU(1, 1). Recall that for quantum systems evolving
on the SU(2) Lie group, since the corresponding total Hamiltonians are always compact,
the structured decomposition exists for arbitrary H0 and HI as long as they are linearly
independent [2]. We believe that the structured decomposition method can be extended to
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controlling quantum systems with more complex noncompact symmetry groups such as the
control of SU(m, n) CS’s [48, 49].
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Appendix A. The proof of proposition 1

(1) For the case of |C| > 1. Let −1 < u1, u3 < 1 and 1 < |u2| < C. Then from the
matrix equation

∏3
k=1 e−itk (K3+ukK2) = e−iθK2 (or equivalently, e−it1(K3+u1K2) e−it2(K3+u2K2) =

e−iθK2 eit3(K3+u3K2)), we can get the following four equations (actually, only three of them are
independent) by equating the entries of the matrices on both sides:

cos

(
t1r1

2

)
cosh

(
t2r2

2

)
− 1 − u1u2

r1r2
sin

(
t1r1

2

)
sinh

(
t2r2

2

)
= cos

(
t3r3

2

)
cosh

θ

2
− u3

r3
sin

(
t3r3

2

)
sinh

θ

2
, (A.1)

1

r1
sin

(
t1r1

2

)
cosh

(
t2r2

2

)
+

1

r2
cos

(
t1r1

2

)
sinh

(
t2r2

2

)
= − 1

r3
sin

(
t3r3

2

)
cosh

θ

2
, (A.2)

u1

r1
sin

(
t1r1

2

)
cosh

(
t2r2

2

)
+

u2

r2
cos

(
t1r1

2

)
sinh

(
t2r2

2

)
= −u3

r3
sin

(
t3r3

2

)
cosh

θ

2
+ cos

(
t3r3

2

)
sinh

θ

2
, (A.3)

u1 − u2

r1r2
sin

(
t1r1

2

)
sinh

(
t2r2

2

)
= − 1

r3
sin

(
t3r3

2

)
sinh

θ

2
, (A.4)

where r1 =
√

1 − u2
1, r2 =

√
u2

2 − 1, r3 =
√

1 − u2
3. Equations (A.1)–(A.4) can be further

recast as 

cot

(
t1r1

2

)
= u1 − u2

r1
coth

θ

2
± 1

r1

√
�,

coth

(
t2r2

2

)
= ∓ 1

r2

√
�,

cot

(
t3r3

2

)
= u3 − u2

r3
coth

θ

2
± 1

r3

√
�,

(A.5)

where � = (u2 − u1)(u2 − u3)
(
coth2 θ

2 − 1
)

+
(
u2

2 − 1
)
. As −1 < u1, u3 < 1 and |u2| > 1,

it can be concluded that � > 0 and 1
r2

√� > 1. Therefore, equation (A.5) is solvable for
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(t1, t2, t3), and the corresponding positive solutions can be written as

t1 = 2

r1

[
arccot

(
u1 − u2

r1
coth

θ

2
− 1

r1

√
�
)

+ mπ

]
,

t2 = 2

r2
arcoth

(
1

r2

√
�
)

,

t3 = 2

r3

[
arccot

(
u3 − u2

r3
coth

θ

2
− 1

r3

√
�
)

+ nπ

]
,

(A.6)

where the integers m and n are introduced to keep t1 and t3 positive, and they have an identical
parity when (u2 − u1)θ � 0, otherwise they have different parities.

(2) For the case of C � 1. Let |u1|, |u3| < C, and then from e−it1(K3+u1K2) e−it2(K3+u2K2) =
e−iθK2 eit3(K3+u3K2) it can be deduced that

cos

(
t1r1

2

)
cosh

(
t2r2

2

)
− 1 − u1u2

r1r2
sin

(
t1r1

2

)
sin

(
t2r2

2

)
= cos(t3r3) cosh

θ

2
− u3

r3
sin

(
t3r3

2

)
sinh

θ

2
, (A.7)

1

r1
sin

(
t1r1

2

)
cos

(
t2r2

2

)
+

1

r2
cos

(
t1r1

2

)
sin

(
t2r2

2

)
= − 1

r3
sin

(
t3r3

2

)
cosh

θ

2
, (A.8)

u1

r1
sin

(
t1r1

2

)
cos

(
t2r2

2

)
+

u2

r2
cos

(
t1r1

2

)
sin

(
t2r2

2

)
= −u3

r3
sin

(
t3r3

2

)
cosh

θ

2
+ cos

(
t3r3

2

)
sinh

θ

2
, (A.9)

u1 − u2

r1r2
sin

(
t1r1

2

)
sin

(
t2r2

2

)
= − 1

r3
sin

(
t3r3

2

)
sinh

θ

2
, (A.10)

where rk =
√

1 − u2
k, (k = 1, 2, 3). With a few calculations, one can rewrite equations (A.7)–

(A.10) as 

cot

(
t1r1

2

)
= u1 − u2

r1
coth

θ

2
± 1

r1

√
�,

cot

(
t2r2

2

)
= ∓ 1

r2

√
�,

cot

(
t3r3

2

)
= u3 − u2

r3
coth

θ

2
± 1

r3

√
�,

(A.11)

where � = (u2 − u1)(u2 − u3)
(
coth2 θ

2 − 1
)

+
(
u2

2 − 1
)
. It is easy to verify that � � 0 iff

(u2 − u1)(u2 − u3) > 0

coth2 θ

2
� 1 − u1u2 + u1u3 − u2u3

(u2 − u1)(u2 − u3)

. (A.12)

Thus if

|θ | � 2 max

[
arcoth

√
1 + u1u3 − Cu1 − Cu3

(C − u1)(C − u3)
,

arcoth

√
1 + u1u3 + Cu1 + Cu3

(C + u1)(C + u3)

]
,

(A.13)
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and u2 satisfies
(u2 − u1)(u2 − u3) > 0,

1

2cosh2 θ

2

∣∣√u2
1 + u2

3 − 2u1u3 cosh θ + sinh2θ + u1 + u3

∣∣ � |u2| � C, (A.14)

from equations (A.11) one can immediately obtain the corresponding positive solutions for
t1, t2 and t3 as 

t1 = 2

r1

[
arccot

(
u1 − u2

r1
coth

θ

2
± 1

r1

√
�
)

+ mπ

]
t2 = 2

r2
arccot

[(
∓ 1

r2

√
�
)

+ lπ

]
t3 = 2

r3

[
arccot

(
u3 − u2

r3
coth

θ

2
± 1

r3

√
�
)

+ nπ

] (A.15)

where the integers m, n and l are introduced to keep t1, t2 and t3 positive, and m and n have an
identical parity when (u2 − u1)θ � 0, otherwise they have different parities. This completes
the proof of proposition 1.

Appendix B. The proof of proposition 2

Let −1 < u1, u3 < 1 and 1 < |u2| < C, and (u1, u2, u3) is constrained in the set
�+ = {(u1, u2, u3)|� � 0; uk−u2

rk
cot θ

2 + 1
rk

√� � 1, k = 1, 3}, where � = (u2 − u1)(u2 −
u3)
(
cot2 θ

2 + 1
)

+
(
1 −u2

2

)
. It is easy to verify that such (u1, u2, u3) always exists when C > 1.

From the matrix equation e−it1(K2+u1K3) e−it2(K2+u2K3) = e−iθK3 eit3(K2+u3K3), we may obtain the
following equations (actually, they are equivalent to three independent equations) by equating
entries of the matrices on both sides:

cosh

(
t1r1

2

)
cos

(
t2r2

2

)
+

1 − u1u2

r1r2
sinh

(
t1r2

2

)
sin

(
t2r2

2

)
= cosh

(
t3r3

2

)
cos

θ

2
+

u3

r3
sinh

(
t3r3

2

)
sin

θ

2
, (B.1)
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sinh

(
t1r1

2

)
cos

(
t2r2
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)
+

u2

r2
cosh

(
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)
sin

(
t2r2

2

)
= cosh

(
t3r3
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(
t3r3
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2
, (B.2)
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sinh

(
t1r1
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)
cos

(
t2r2

2

)
+

1

r2
cosh

(
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2

)
sin

(
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2

)
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sinh

(
t3r3

2

)
cos

θ

2
, (B.3)

u1 − u2

r1r2
sinh

(
t1r1

2

)
sin

(
t2r2

2

)
= − 1

r3
sinh

(
t3r3

2

)
sin

θ

2
, (B.4)

where r1 =
√

1 − u2
1, r2 =

√
u2

2 − 1, r3 =
√

1 − u2
3. With a few calculations,

equations (B.1)–(B.4) can be simplified to

coth

(
t1r1

2

)
= u1 − u2

r1
cot

θ

2
± 1

r1

√
�, (B.5)
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cot

(
t2r2

2

)
= ∓ 1

r2

√
�, (B.6)

coth

(
t3r3

2

)
= u3 − u2

r3
cot

θ

2
± 1

r3

√
�. (B.7)

Therefore, the positive solutions for t1, t2 and t3 in equations (B.5)–(B.7) are

t1 = 2

r1

[
arcoth

(
u1 − u2

r1
cot

θ

2
+

1

r1

√
�
)]

,

t2 = 2

r2

[
arccot

(
− 1

r2

√
�
)

+ 2lπ

]
,

t3 = 2

r3

[
arcoth

(
u3 − u2

r3
cot

θ

2
+

1

r3

√
�
)]

.

(B.8)

where l = 0, 1, 2, . . . ,∞, which is introduced to keep t2 positive. This completes the proof.

References

[1] Ramakrishna V, Ober R, Sun X, Steuernagel O, Botina J and Rabitz H 2000 Explicit generation of unitary
transformations in a single atom or molecule Phys. Rev. A 61 032106

[2] Ramakrishna V, Flores K L, Rabitz H and Ober R J 2000 Quantum control by decomposition of SU(2) Phys.
Rev. A 62 053409

[3] D’Alessandro D 2004 Optimal evaluation of generalized Euler angles with applications to control Automatica
40 1997

[4] D’Alessandro D 2002 The optimal control problem on SO(4) and its applications to quantum control IEEE
Trans. Autom. Control 47 87–92

[5] Schirmer S G, Greentree A D and Ramakrishna V 2002 Constructive control of quantum systems using
factorization of unitary operators J. Phys. A: Math. Gen. 35 8315

[6] Albertini F and D’Alessandro D 2001 The Lie algebra structure and nonlinear controllability of spin systems
http://arXiv.org/abs/quant-ph/0106115

[7] Schirmer S G and Solomon A I 2004 Constraints on relaxation rates for N-level quantum systems Phys. Rev.
A 70 022107

[8] Schirmer S G, Pullen I C H and Solomon A I 2005 Controllability of multi-partite quantum systems and selective
excitation of quantum dots J. Opt. B: Quantum Semiclass. Opt. 7 S293–9

[9] Thanopulos I, Král P and Shapiro M 2004 Complete control of population transfer between cluster of degenerate
states Phys. Rev. Lett. 92 113003

[10] Tarn T J, Clark J W and Lucarelli D G 2000 Controllability of quantum mechanical systems with continuous
spectra Procedures of 39th IEEE Conference on Decicion and Control (Sydney, Australia, December 2000)
vol 1 pp 943–8

[11] Dong S-H, Lara-Rosano F and Sun G H 2004 The controllability of the pure states for the morse potential with
a dynamical group SU(1, 1) Phys. Lett. A 325 218–225

[12] Adams B G 1994 Algebraic Approach to Simple Quantum Systems (Berlin: Springer)
[13] Barut A O and Kleinert H 1967 Transition probablities of the hydrogen atom from noncompact dynamical

groups Phys. Rev. 156 1541
[14] de Prunele E 1980 O(4, 2) coherent states and hydrogenic atoms Phys. Rev. A 42 2542
[15] Lan C H, Tarn T J, Chi Q S and Clark J 2004 Strong analytic controllability for hydrogen control systems

Proc. 43rd IEEE Conf. on Decision and Control (Atlantis, Paradise Island, Bahamas)
[16] Lan C H, Tarn T J, Chi Q S and Clark J 2005 Analytic controllability of time-dependent quantum control

systems J. Math. Phys. 46 052102
[17] Gerry C C 1985 Dynamics of SU(1, 1) coherent states Phys. Rev. A 31 2721
[18] Gerry C C and Vrscay E R 1989 Dynamics of pusled SU(1, 1) coherent states Phys. Rev. A 39 5717
[19] Inomata A, Kuratsuji H and Gerry C C 1992 Path Integrals and Coherent States of SU(2) and SU(1, 1)

(Singapore: World Scientific)
[20] Gortel Z W 1991 Classical dynamics for a class of SU(1, 1) Hamiltonians Phys. Rev. A 43 3221
[21] Ban M 1993 Lie-algebra methods in quantum optics: the Liouville-space formulation Phys. Rev. A 47 5093

http://dx.doi.org/10.1103/PhysRevA.61.032106
http://dx.doi.org/10.1103/PhysRevA.62.053409
http://dx.doi.org/10.1016/j.automatica.2004.06.006
http://dx.doi.org/10.1109/9.981724
http://dx.doi.org/10.1088/0305-4470/35/39/313
http://arXiv.org/abs/quant-ph/0106115
http://dx.doi.org/10.1103/PhysRevA.70.022107
http://dx.doi.org/10.1088/1464-4266/7/10/013
http://dx.doi.org/10.1103/PhysRevLett.92.113003
http://dx.doi.org/10.1103/PhysRev.156.1541
http://dx.doi.org/10.1103/PhysRevA.42.2542
http://dx.doi.org/10.1063/1.1867979
http://dx.doi.org/10.1103/PhysRevA.31.2721
http://dx.doi.org/10.1103/PhysRevA.39.5717
http://dx.doi.org/10.1103/PhysRevA.43.3221
http://dx.doi.org/10.1103/PhysRevA.47.5093


Quantum control by decomposition of SU(1, 1) 13551

[22] Lu H-X, Yang J, Zhang Y-D and Chen Z-B 2003 Algebraic approach to master equations with superoperator
generators of SU(1, 1) and SU(2) Lie algebras Phys. Rev. A 67 024101

[23] EL-Orany F A A, Hassan S S and Abdalla M S 2003 Squeezing evolution with non-dissipative SU(1, 1) systems
J. Opt. B: Quantum Semiclass. Opt. 5 396–404

[24] Ramakrishna V 2002 Non-unitary models in quantum control Proc. 41st IEEE Conf. on Decision and Control
(Las Vegas, Nevada USA, December 2002) pp 57–61

[25] Dymus B S A 1970 SU(1, 1) as some kind of dynamical group Acta Phys. Pol. 3 309
[26] Song D-Y 2003 Unitary relation for the time-depedent SU(1, 1) systems Phys. Rev. A 68 012108
[27] Agarwal G S and Banerji J 2001 Reconstruction of SU(1, 1) states Phys. Rev. A 64 023815
[28] Dattoli G, Di Lazzaro P and Torre A 1987 SU(1, 1), SU(2), and SU(3) coherence-preserving hamiltonians and

time-ordering techniques Phys. Rev. A 35 1582
[29] Bose S K 1985 Dynamical algebra of spin waves in localised-spin models J. Phys. A: Math. Gen. 18 903–22
[30] Gerry C C, Gou S-C and Steinbach J 1996 Generation of motional SU(1, 1) intelligent states of a trapped ion

Phys. Rev. A 55 630–5
[31] Dattoli G, Orsitto F and Torre A 1986 SU(2) and SU(1, 1) time-dependent coherence-preserving hamiltonians

and generation of antibunched radiation in laser-plasma scattering Phys. Rev. A 34 2466–9
[32] Ja Vilenkin N and Klimyk A U 1991 Representation of Lie Groups and Special Functions vol 1: Simplest Lie

groups, special functions and integral transforms (Boston: Kluwer)
[33] Bargmann V 1947 Ann. Math. 48 568
[34] Mukunda N 1973 Matrices of finite lorentz transformations in a noncompact basis: III. completeness relation

for O(2, 1) J. Math. Phys. 14 2005
[35] Barut A O and Wilson R 1976 Some new identities of Clebsch-Gordan coefficients and representation function

of so(2, 1) and so(4) J. Math. Phys. 17 900–15
[36] Cirac J I, Parkins A S, Blatt R and Zoller P 1993 ‘dark’ squeezed states of the motion of a trapped ion

Phys. Rev. Lett. 70 556–9
[37] de M Filho R L and Vogel W 1996 Even and odd coherent states of the motion of a trapped ion Phys. Rev.

Lett. 76 608–11
[38] Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Laser cooling to the zero-point energy of motion

Phys. Rev. Lett. 62 403–6
[39] Foden C L and Whittaker D M 1998 Quantum electrodynamic treatment of photon-assisted tunneling Phys.

Rev. B 58 12617–20
[40] Semião F L and Barranco A V 2005 Coherent-state superpositions in cavity quantum electrodynamics with

trapped ions Phys. Rev. A 71 065802
[41] Moon K and Girvin S M 2005 Theory of microwave parametric down-conversion and squeezing using circuit

QED Phys. Rev. Lett. 95 140504
[42] Hu Xuedong and Nori Franco 1996 Squeezed phonon states: Modulating quantum fluctuations of atomic

displacements Phys. Rev. Lett. 76 2294–7
[43] Perelomov P 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[44] Solomon A I 1970 Group theory of superfluidity J. Math. Phys. 12 390–4
[45] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer)
[46] Wodkiewicz K and Eberly J H 1985 Coherent states, squeezed fluctuations, and the SU(2) and SU(1, 1) groups

in quantum-optics applications J. Opt. Soc. Am. B 2 458–66
[47] Rekdal P K and Skagerstam B-S K 2000 Quantum dynamics of non-degenerate parametric amplification

Phys. Scr. 61 296–306
[48] Puri R R 1994 SU(m, n) coherent states in the bosonic representation and their generation in optical parametric

processes Phys. Rev. A 50 5309C5316
[49] Yang Z S, Kwong N H and Binder R 2004 su(N, N) algebra and constants of motion for bosonic mean-field

exciton equations Phys. Rev. B 70 195319

http://dx.doi.org/10.1103/PhysRevA.67.024101
http://dx.doi.org/10.1088/1464-4266/5/5/004
http://dx.doi.org/10.1103/PhysRevA.68.012108
http://dx.doi.org/10.1103/PhysRevA.64.023815
http://dx.doi.org/10.1103/PhysRevA.35.1582
http://dx.doi.org/10.1088/0305-4470/18/6/014
http://dx.doi.org/10.1103/PhysRevA.55.630
http://dx.doi.org/10.1103/PhysRevA.34.2466
http://dx.doi.org/10.2307/1969129
http://dx.doi.org/10.1063/1.1666282
http://dx.doi.org/10.1063/1.523004
http://dx.doi.org/10.1103/PhysRevLett.70.556
http://dx.doi.org/10.1103/PhysRevLett.76.608
http://dx.doi.org/10.1103/PhysRevLett.62.403
http://dx.doi.org/10.1103/PhysRevB.58.12617
http://dx.doi.org/10.1103/PhysRevA.71.065802
http://dx.doi.org/10.1103/PhysRevLett.95.140504
http://dx.doi.org/10.1103/PhysRevLett.76.2294
http://dx.doi.org/10.1063/1.1665601
http://dx.doi.org/10.1238/Physica.Regular.061a00296
http://dx.doi.org/10.1103/PhysRevA.50.5309
http://dx.doi.org/10.1103/PhysRevB.70.195319

	1. Introduction
	2. Preliminaries
	3. Main results
	3.1. The
	3.2. The
	3.3. The general case

	4. Applications
	5. Conclusions
	Acknowledgments
	Appendix A. The proof of proposition 1
	Appendix B. The proof of proposition 2
	References

